
Detection and Prevention of SQL Injection attack

Manish Kumar , L.Indu

Computer Science and Engineering,
 P. B. College of Engineering, Sriperumbudur-602 105

Abstract— SQL injection is a technique where the attacker
injects an input in the query in order to change the structure
of the query intended by the programmer and gaining the
access of the database which results modification or deletion of
the user’s data. In the injection it exploits a security
vulnerability occurring in database layer of an application.
SQL injection attack is the most common attack in websites in
these days. Some malicious codes get injected to the database
by unauthorized users and get the access of the database due
to lack of input validation. Input validation is the most critical
part of software security that is not properly covered in the
design phase of software development life-cycle resulting in
many security vulnerabilities. This paper presents the
techniques for detection and prevention of SQL injection
attack. There are no any known full proof defences available
against such type of attacks. In this paper some predefined
method of detection and the some modern techniques of
preventions are discussed. This paper also describes
countermeasures of SQL injection.

Keywords— web application, SQLIA, detection, prevention,
vulnerabilities, web architecture,

I. INTRODUCTION

Now a days web application is widely used in various
applications it is the reliable and efficient solution to the
challenges of communicating and conducting the various
organisation, business or commerce over the internet. Now
each and every important assignment is done by using the
web application which is connected through the internet.
For example electricity bill, online shopping, gaming,
banking, messaging, shopping, conferences, etc. So the
increase of web application involving the various security
issues in the web world.
The SQLIA (structured query language injection attack) is a
code injection attack technique commonly used for
attacking websites in which an attacker injects some SQL
codes in place of the original codes to get access the
database. The open web application security project
(OWASP) ranks SQLI as the most widespread website
security risk in 2011. The National Institute of Standards
and Technology’s National vulnerability Database reported
289 SQL vulnerabilities in websites including those of IBM,
HP, and MICROSOFT. In December 2011, SANS Institute
security experts reported a major SQL injection attack that
affects approximately 160000 websites using Microsoft’s
Internet Information Services (IIS), ASP.NET, and SQL
Server Frameworks.
There are variety of techniques are available to detect
SQLIA. The most preferred are Web Framework, Static
Analysis, Dynamic Analysis, combined Static and Dynamic
Analysis and Machine Learning Technique. Web

Framework provides filters to filter special characters but
other attacks are not detected. Static Analysis checks the
input parameter type, but it fails to detect attacks with
correct input type. Dynamic Analysis technique is capable
of scanning vulnerabilities of web application but is not
able to detect all types of SQLIA. Combined Static and
Dynamic Analysis includes the benefit of both, but this
method is very complex in order to proceed. Machine
Learning method can detect all types of attacks but results
in number of false positives and negatives.

Fig – successful SQLIA

II. SQLIA MECHANISMS

Malicious SQL statements can be introduced into a
vulnerable application using many of different input
mechanisms. These are the most common mechanisms

2.1 Injection through user input: In the type of injection
the attacker injects SQL commands by providing suitably
crafted user input. A web application can read user’s input
in several ways based on the environment in which the
application is deployed.

2.2 Injections through cookies: Cookies are the small
files that containing state information generated by Web
applications and stored on the client machine. When a client
returns to the Web application the cookie is used to be
restore the client information. Since the client has control
over the storage of cookie, a malicious client could tamper
with the cookie’s content. And then if Web application uses
the cookie content to build SQL queries, an attacker could
easily submit an attack by embedding it in the cookie.

2.3 Injections through the server variables: Server
variables are collections of variables that contain HTTP,
network headers, and environmental variables .Web
applications used these server variables in a variety of ways
like logging usage. If these servers logged to a database
without sanitization, this could create SQLI vulnerability

Manish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 374-377

www.ijcsit.com 374

because attacker can forge the values that are placed in
HTTP and network headers. They can exploit this
vulnerability by placing an SQLIA directly into the headers.
And when the query to log the server variable is issued to
the database, the attack in the forged header is triggered
automatically.

2.4 Second order injection: In second order injection,
attacker seed malicious inputs in to a system or database to
indirectly trigger an SQLIA when that input is used at a
later time. The attack takes place when the malicious input
reaches to the database.

III. CLASSIFICATION OF SQLIA

3.1 Tautology: In the tautology attack the attacker tries to
use a conditional query statement to be evaluated always
true. Attacker uses WHERE clause to inject and turn the
condition into a tautology which is always true. The
simplest form of tautology

Example
SELECT *FROM Accounts WHERE user=’’or1=1—

‘AND pass=’’AND eid=
The result would be all the data in accounts table because

the condition of the WHERE clause is always true.

 3.2 Illegal/Logical Incorrect queries: When a query is
rejected an error message is returned from the database
including useful debugging information. This information
helps attackers to make move further and find vulnerable
parameters in the application and consequently database of
the application.

Example
SELECT * FROM Accounts WHERE user=’ ‘ AND pass=’

‘AND eid =convert(int,(SELECT TOP 1name FROM sysobjects
WHERE xtype=’u’))

In the example the attacker attempts to convert the name
of the first user defined table in the metadata table of the
database to ‘int’. This type conversion is not legal therefore
the result is an error which reveals some information that
should not be shown.

3.3 Union queries: In this type of queries unauthorised

query is attached with the authorised query by using
UNION clause.

Example
SELECT * FROM Accounts WHERE user=’’ UNION SELECT
*FROM Students—‘AND pass=’’AND eid=
The result of the first query in the example given above is
null and the second one returns all the data in students table
so the union of these two queries is the student table.

 3.4 Piggy-Backed query: In the query attack attacker tries
to add an additional queries in to the original query
string .In this injection the intruders exploit database by the
query delimiter, such as “;”, to append extra query to the
original query
Example
 SELECT*FROM Accounts WHERE user=’’;drop table
Accounts—‘AND pass=’ ‘ AND eid=
The result of the example is losing the credential
information of the accounts table because it would be
dropped branch from database.

 3.5 Inference: In this type of attack, intruders change the
behaviour of a database of application. These are the well
known types of inference
 3.5.1 Blind Injection: This is little difficult type of attack
for attacker. During the development process sometime the
developer hides some error details which help the attacker
to compromise with database. In this situation the attacker
face the generic page provided by developer in place of an
error message
 Example
SELECT * FROM Accounts WHERE user=’user1’AND1=1 - -
‘AND pass=’ ‘AND eid=
During injection it is always evaluated as true if there are
no any error message, and the attacker realizes that the
attack has passed user parameter is vulnerable to injection.
3.5.2 Timing attack: In the Timing attack the attacker
gathers information about the response time of the database.
This technique is used by executing the if-then statement
which results the long running query or time delay
statement depending upon the logic injected in database and
if the injection is true then the “WAITFOR” keyword
which is along with the branches delays the database
response for a specific time.
Example
SELECT * FROM Accounts WHERE user=’user1’ AND ASCII
(SUBSTRING((SELECT TOP 1 name FROM sysobjects),1,1))>X
WAITFOR DELAY ‘000:00:09’- -‘AND PASS=’ ‘ AND eid=
In the example the attacker trying to find the first character
of the first table by comparing its ASCII value with X . if
there is a 9 second delay he realize that the answer to his
question is yes. So by continuing the process the name of
the first table would be discovered.

3.6 Alternate encoding: In this type of attack the regular
strings and characters are converted into hexadecimal,
ASCII and Unicode. Because of this the input query is
escaped from filter which scans the query for some bad
character which results SQLIA and the converted SQLIA is
considered as normal query.

Example
SELECT * FROM Accounts WHERE user=’user1’;

exec(char(0x8774675u8769e)) - -‘ AND pass=’ ‘ AND eid=
The example char () function and ASCII hexadecimal

encoding are used. The functions will get integer number as
a parameter and return as a sample of that character. In the
example it will return “SHUTDOWN”, so whenever the
query is interpreted the SHUTDOWN command is
executed.

3.7 Stored procedure: Stored procedure is the built in

extra abstraction layer on the database defined by the
programmer. By using the stored procedure the user can
store its own function according to the need. It is extending
the functionality of database and interacting with the system
operating system. Then the attacker tries to identify the
underlying database in order to exploit the database
information.

Example
SELECT * FROM Accounts WHERE user=’ ‘; exec

xp_logininfo ‘ BUILTIN\Administrators’; - - ‘ AND pass=’
‘ AND eid=

Manish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 374-377

www.ijcsit.com 375

In this example the built in stored procedure
“xp_logininfo” is executed in order to get the information
about the BUILTIN\Administrators windows group.

IV DETECTION SQLIA

Several ways to detect the SQLIA vulnerabilities are:
 4.1 code based detection techniques: This approach
generally occupies for developing test suit based on codes
for detecting the SQLI vulnerabilities .But the suit does not
find vulnerable program points explicitly.
SQLUnitGen is a prototype tool that uses static analysis tool
to generate the user input to database access point and
generate unit test report contacting SQLIA patterns for
these points.
MUSIC (mutation based SQL injection vulnerability
checking) it uses nine mutation operators to replace original
queries with mutated queries. Jose fonseca, Marco Vieira,
Henrique Madeira developed a tool. This tool automatically
detects the mutated queries and runs the test tool after it
generated the test results after the detection.
 4.2 concrete attack generations: This type of approach
uses state of art symbolic execution techniques to
automatically generate test inputs that expose SQLI
vulnerability in Web program.
The symbolic execution based approaches use constraint
solvers that can only handle numeric operation. Because
inputs of Web applications are string by default .If a
constraint solver can solve myriad string operations applied
to inputs, developers could use symbolic execution to both
detect the vulnerability of SQL statements that use inputs
and generate concrete inputs that attack them.
 4.3 Taint-based vulnerability detection: SQLIA can be
avoided by using static and dynamic technique to prevent
tainted data from affecting untainted data, such as
programmer –defined SQL query structures.
Several of researchers have applied prominent static
analysis techniques such as flow sensitive analysis, context
sensitive analysis, alias analysis and interprocedural
dependency analysis, to identify input sources and database
access points and check whether every flow from a source
to a sink is subject to an input validation and /or input
sanitization routine, but these approaches have some
limitations. They do not consider input validation using
prediction, fail to specify vulnerability patterns.
Gary Wassermann and Zedong Su used context free
grammar to model the effects of input validation and
sanitization routines .Their techniques checks whether SQL
queries syntactically confine the string values returned from
those routines and, if so, automatically concludes that the
routines used are correctly implemented.

V PREVENTION SQLIA
 5.1 Defensive coding: Developers have approached a
range of code based development practices to counter
SQLIA. These techniques are generally based on proper
input filtering, potentially harmful character and rigorous
type checking of inputs.
 5.1.1 Manual defensive coding practices: Based on the
security reports such as OWSAP’s SQL cheat sheet and
Chris Anley’s white paper provide useful manual defensive
coding guidelines.

Parameterized queries or stored procedures: The attacker
take advantage of dynamic SQL by replacing the original
queries and create some parameterized query in database.
These attacks force to developer for first define the SQL
code structure before including parameters in query.
Because parameters are bound to the defined SQL structure,
thereafter it is not possible to inject additional SQL code
Escaping: If dynamic queries cannot be avoided, escaping
all user-supplied parameters is the best option. Then the
developer should identify the all input sources to define the
parameter that need escaping, follow database-specific
escaping procedures, and use standard defining libraries
instead of the custom escaping methods.
Data type validation: After following the steps for the
parameterized query and escaping the developer must
properly validate the input data type. The developer must
define the input data type is string or numeric or any other
type and input data given by user is incorrect then it could
easily reject.
White list filtering: Some of the special character which is
normally used during injection .so the developer should
characterise such special character as the black list filtering.
The filtering approach is suitable for the well structured
data. Such as email address, dates, etc. and developer
should keep a list of legitimate data patterns and accept
only matching input data.
 5.1.2 SQL DOM: The manual defensive coding is
the best way to avoid the SQLIA. The approach SQL DOM
is introduced by Russell McClure and Ingolf Kruger. In the
SQL DOM uses the encapsulation of database queries to
provide a safe way to avoid the SQLIA problem by
changing the query building process from one that uses
string concatenation to a systematic one that uses a type-
checked API. In the process a set of classes that enables
automated data validation and escaping. Developers
provide their own database schema and construct SQL
statement using its API’s.
It is especially useful when the developer needs to be using
the dynamic SQL in place of the parameterized queries for
getting flexibility.

 5.2 Runtime prevention: Runtime prevention may be more
complex than the defensive coding .Because some of the
approaches require code instrumentation to enable runtime
checking. But it is able to prevent from all SQLIA.
 5.2.1 Randomization: The approach is proposed by Boyd
and Keromytis in which randomized SQL query language is
used, pointing a particular CGI in an application, where a
proxy server used in between the SQL server and Web
server. It sends SQL query with a randomized value to the
proxy server, which is received by the client and de-
randomized and sends it to the server. This technique has
two main advantages is security and portability. But if the
random value is predicted then it is not useful.
 5.2.2 Learning based prevention: This approach is based
on a runtime monitoring system deployed between the
application server and database server, it intercept all
queries and check SQL keywords to determine whether the
queries syntactic structure are legitimate before the
application sends them to the database .

Manish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 374-377

www.ijcsit.com 376

Static Analysis or AMNESIA (analysis for monitoring and
neutralizing SQL injection attacks): This approach is
suggested by Hal fond W.G, Orso.A, it is model based
approach to detect illegal query before execution into
database.

 Schematic diagram of AMNESIA

This technique uses program analysis to automatically build
a model of legitimate queries that could be generated by the
application .And its dynamic part the technique uses
runtime monitoring to inspect the dynamically-generated
queries and check them against the statically built model.
The main drawback of the model is that it requires
modification of the Web application source code for
successful collaboration with the security monitor officer.
 Dynamic analysis : The statically inferred query
structures might not be accurate. And the attackers could
attack in the weakness .So the dynamic analysis can provide
more accuracy. It can locate the vulnerabilities of SQLIA
without any source code modification.
 SQL Check: SQLCheck tracks tainted data at runtime by
marking it with metacharacters. And when a Web
application invokes a query, SQLCheck learns the
query legitimate structure by excluding marked data from it.
 SQL Prob: SQLProb executes a program of interests with
various valid inputs to collect all possible queries that might
legitimately appear during runtime. During runtime it usage
a global pair wise alignment algorithm to compare issued
user queries against those in the legitimate query repository
and extracts the user inputs.
 CANDID: CANDID dynamically mines a program’s
legitimate query structure at each path by executing the
program with the valid and nonattacking inputs and
thereafter comparing actual issued query with the legitimate
query structure mined for the same path.

VI CONCLUSIONS
In this paper various types of SQL injection mechanism,

detection type and prevention techniques are discussed .we
found that there is no one complete foolproof solution to
database security and have some issues hard to
eliminate .Any organization that attempts to secure a
database system, must consider the security of the overall
environment including the communication channel, user
access methods, the database, and any application which is
used to access the database
As all we can say a well thought –out combination of
hardware and software solutions with modern database
security approach need to be implemented to make modern
database system more secure.

ACKNOWLEDGMENT

I am sincerely thankful to Asst professor L.INDU for
support and guidance .and I also like to thank the
management of P.B. College of Engineering for their
support to carry out this work efficiently.

REFERENCES
[1] Justin Clarke, SQL Injection Attacks and Defense, Second

Edition,Syngress Publication, July 2, 2012,ISBN-13: 978-
1597494243

[2] Inyong Lee , Soonki Jeong Sangsoo Yeoc, Jongsub Moond, “A
novel method for SQL injection attack detection based on removing
SQL query attribute”, Journal Of mathematical and computer
modeling, Elsevier 2011.

[3] W.G.J. Halfond, J. Viegas, and A. Orso, “A Classification of SQL
Injection Attacks and Countermeasures,” Proc. Int’l Symp. Secure
Software Eng.(ISSSE 06),IEEECS, 2006;
www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSS
E06.pdf.

[4] S. W. Boyd and A. D. Keromytis,“SQLrand: Preventing SQL
Injection Attacks”, in Proceedings of the 2nd Applied Cryptography
and Network Security Conference, pages 292–302, Jun. 2004.

[5] W. G. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks”, in Proceedings of the
IEEE and ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

[6] Varian Luong “Intrusion detection and prevention system: SQL
injection attacks”, 2010.

[7] Wi11iamGJ.Halfond,JeremyViegas,AlessandroOrs. AClassifieatio
of SQL Injeetion Attacks and Countermeasures. In Proceedings of
the IEEE International Symposium on Secure Software
Engineering,2006.

[8] David Morgan. Web Injection Attacks[J]. Network Security,2006.
[9] Ferruh Mavituna. Deep Blind SQL Injection. Portcullis security.

com2008.
[10] Advanced SQL injection [Online]. Available:

http://www.nextgenss.com/papers/advanced_SQL_injection.pdf.
[11] Atefeh Tajpour et al. “Evaluation of SQL Injection Detection and

Prevention Techniques” Second International Conference on
Computational Intelligence, 2010.

Manish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 374-377

www.ijcsit.com 377

